Manual Page Search Parameters

ISAKMPD.CONF(5) File Formats Manual ISAKMPD.CONF(5)

isakmpd.confconfiguration file for isakmpd

isakmpd.conf is the configuration file for the isakmpd(8) daemon, managing security association and key management for the IPsec layer of the kernel's networking stack.

The file is of a well-known type of format called .INI style, named after the suffix used by an overrated windowing environment for its configuration files. This format consists of sections, each beginning with a line looking like:

Between the brackets is the name of the section following this section header. Inside a section many tag/value pairs can be stored, each one looking like:
Tag=Value
The current line can be extended over multiple lines using a backslash (‘\’). Comments can be put anywhere in the file using a hash mark (‘#’), and extend to the end of the current line. Care should be taken when commenting out multi-line text: the comment remains in effect until the end of the entire current line.

Often the right-hand side values consist of other section names. This results in a tree structure. Some values are treated as a list of several scalar values. Such lists always use a comma character as the separator. Some values are formatted like this: X,Y:Z, which is an offer/accept syntax, where X is a value we offer and Y:Z is a range of accepted values, inclusive.

To activate changes to isakmpd.conf without restarting isakmpd(8), send a SIGHUP signal to the daemon process.

Some predefined section names are recognized by the daemon, avoiding the need to fully specify the Main Mode transforms and Quick Mode suites, protocols, and transforms.

For Main Mode:

cipher-hash[-group][-RSA_SIG]

where:

cipher
is either BLF, 3DES, CAST, AES, AES-128, AES-192 or AES-256
hash
is either MD5, SHA, or SHA2-{256,384,512}
group
is either GRP1, GRP2, GRP5, GRP14, GRP15, GRP16, GRP17, GRP18, GRP19, GRP20, GRP21, GRP25, GRP26, GRP27, GRP28, GRP29 or GRP30.

For Quick Mode:

QM-proto[-TRP]-cipher[-hash][-PFS[-group]]-SUITE

where:

proto
is either ESP or AH
cipher
is either 3DES, CAST, BLF, AES, AES-128, AES-192, AES-256, AESCTR, AESCTR-128, AESCTR-192, AESCTR-256, AESGCM-128, AESGCM-192, AESGCM-256, AESGMAC-128, AESGMAC-192, AESGMAC-256 or NULL
hash
is either MD5, SHA, RIPEMD, or SHA2-{256,384,512}
group
is either GRP1, GRP2, GRP5, GRP14, GRP15, GRP16, GRP17, GRP18, GRP19, GRP20, GRP21, GRP25, GRP26, GRP27, GRP28, GRP29 or GRP30.

For example, AES-SHA2-256 means: AES encryption, SHA2-256 hash, and authorization by pre-shared keys. Adding "-RSA_SIG" will enable public key authentication, e.g. AES-SHA2-256-RSA_SIG. Similarly, QM-ESP-3DES-SHA-PFS-SUITE means: ESP protocol, 3DES encryption, SHA hash, and use Perfect Forward Secrecy.

Unless explicitly stated with -GRP1, 2, 5, 14, 15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29 or 30, transforms and PFS suites use DH group 2. There are currently no predefined ESP+AH Quick Mode suites.

The predefinitions include some default values for the special sections "General", "Keynote", "X509-certificates", and "Default-phase-1-configuration". These default values are presented in the example below.

All autogenerated values can be overridden by manual entries by using the same section and tag names in the configuration file. In particular, the default phase 1 (Main or Aggressive Mode) and phase 2 (Quick Mode) lifetimes can be overridden by these tags under the "General" section:

[General]
Default-phase-1-lifetime=	3600,60:86400
Default-phase-2-lifetime=	1200,60:86400

The Main Mode lifetime currently defaults to one hour (minimum 60 seconds, maximum 1 day). The Quick Mode lifetime defaults to 20 minutes (minimum 60 seconds, maximum 1 day).

Also, the default phase 1 ID can be set by creating a ⟨Phase1-ID⟩ section, as shown below, and adding this tag under the "General" section:

[General]
Default-phase-1-ID=		Phase1-ID-name

[Phase1-ID-name]
ID-type=			USER_FQDN
Name=				foo@bar.com

[]
Generic global configuration parameters
If this tag is defined, isakmpd(8) will not set up flows automatically. This is useful when flows are configured with ipsecctl(8) or by other programs like bgpd(8). Thus isakmpd(8) only takes care of the SA establishment.
The interval between watchdog checks of connections we want up at all times, in seconds. The default value is 60 seconds.
Optional default phase 1 ID name.
The default lifetime for autogenerated transforms (phase 1). If unspecified, the value 3600,60:86400 is used as the default.
The default lifetime for autogenerated suites (phase 2). If unspecified, the value 1200,60:86400 is used as the default.
A list of phase 2 suites that will be used when establishing dynamic SAs. If left unspecified, QM-ESP-3DES-SHA-PFS-SUITE is used as the default.
The interval between RFC 3706 (Dead Peer Detection) messages, in seconds. The default value is 0 (zero), which means DPD is disabled.
How many seconds should an exchange maximally take to set up before we give up.
A list of IP addresses or interface names OK to listen on. This list is used as a filter for the set of addresses the interfaces configured provides. This means that we won't see if an address given here does not exist on this host, and thus no error is given for that case. On multi-homed systems, this parameter can be used to enforce the use of particular source IP addresses in packets sent by isakmpd(8).
A list of the form class=level, where both class and level are numbers. This is similar to the -D command line switch of isakmpd(8).
If this tag is defined, whatever the value is, verbose logging is enabled. This is similar to the -v command line switch of isakmpd(8).
The number of seconds between NAT-T keepalive messages, sent by the peer behind NAT to keep the mapping active. Defaults to 20.
The name of the file that contains keynote(4) policies. The default is /etc/isakmpd/isakmpd.policy.
The directory in which isakmpd.conf looks for explicitly trusted public keys. The default is /etc/isakmpd/pubkeys. Read isakmpd(8) for the required naming convention of the files in here.
If this tag is defined, whatever the value is, isakmpd(8) will renegotiate all current phase 2 SAs when the daemon receives a SIGHUP signal, or an ‘R’ is sent to the FIFO interface (see isakmpd(8)).
How many times should a message be retransmitted before giving up.
If this tag is defined, whatever the value is, some semantics of isakmpd.conf are changed so that multiple instances can run on top of one SADB and set up SAs with each other. Specifically this means replay protection will not be asked for, and errors that can occur when updating an SA with its parameters a 2nd time will be ignored.
This tag controls the use of keynote(4) policy checking. The default value is "yes", which enables the policy checking. When set to any other value, policies will not be checked. This is useful when policies for flows and SA establishment are arranged by other programs like ipsecctl(8) or bgpd(8).
[Phase 1]
ISAKMP SA negotiation parameter root
A name of the default ISAKMP peer. Incoming phase 1 connections from other IP addresses will use this peer name. This name is used as the section name for further information to be found. Look at ⟨ISAKMP-peer⟩ below.
A name of the ISAKMP peer at the given IP address.
[Phase 2]
IPsec SA negotiation parameter root
A list of directed IPsec "connection" names that should be brought up automatically, either on first use if the system supports it, or at startup of the daemon. These names are section names where further information can be found. Look at ⟨IPsec-connection⟩ below. Normally any connections mentioned here are treated as part of the "Passive-connection" list we present below; however there is a flag, Active-only, that disables this behaviour. This too is mentioned in the ⟨IPsec-connection⟩ section, in the "Flags" tag.
A list of IPsec "connection" names we recognize and accept initiations for. These names are section names where further information can be found. Look at ⟨IPsec-connection⟩ below. Currently only the Local-ID and Remote-ID tags are looked at in those sections, as they are matched against the IDs given by the initiator.
[]
KeyNote configuration section
A directory containing directories named after IDs (IP addresses, “user@domain”, or hostnames) that contain files named “credentials” and “private_key”.

The credentials file contains keynote(4) credentials that are sent to a remote IKE daemon when we use the associated ID, or credentials that we may want to consider when doing an exchange with a remote IKE daemon that uses that ID. Note that, in the former case, the last credential in the file MUST contain our public key in its Licensees field. More than one credentials may exist in the file. They are separated by whitelines (the format is essentially the same as that of the policy file). The credentials are of the same format as the policies described in isakmpd.policy(5). The only difference is that the Authorizer field contains a public key, and the assertion is signed. Signed assertions can be generated using the keynote(1) utility.

The private_key file contains the private RSA key we use for authentication. If the directory (and the files) exist, they take precedence over X509-based authentication.

[]
X509-certificate configuration section
If this tag is defined, whatever the value is, certificates that do not originate from a trusted CA but are self-signed will be accepted.
A directory containing PEM certificates of certification authorities that we trust to sign other certificates. Note that for a CA to be really trusted, it needs to be somehow referred to by policy, in isakmpd.policy(5). The certificates in this directory are used for the actual X.509 authentication and for cross-referencing policies that refer to Distinguished Names (DNs). Keeping a separate directory (as opposed to integrating policies and X.509 CA certificates) allows for maintenance of a list of "well-known" CAs without actually having to trust all (or any) of them.
A directory containing PEM certificates that we trust to be valid. These certificates are used in preference to those passed in messages and are required to have a subjectAltName extension containing the certificate holder identity; usually IP address, FQDN, or User FQDN.
The private key matching the public key of our certificate (which should be in the "Cert-directory", and have an appropriate subjectAltName field).
A directory containing private keys named after an ID (IP addresses, “user@domain”, or hostnames).

ISAKMP-peer
Parameters for negotiation with an ISAKMP peer
If existent, the IP address of the peer.
If existent, authentication data for this specific peer. In the case of a pre-shared key, this is the key value itself.
The name of the ISAKMP-configuration section to use. Look at ⟨ISAKMP-configuration⟩ below. If unspecified, defaults to "Default-phase-1-configuration".
A comma-separated list of flags controlling the further handling of the ISAKMP SA. Currently there are no specific ISAKMP SA flags defined.
If existent, the name of the section that describes the local client ID that we should present to our peer. If not present, it defaults to the address of the local interface we are sending packets over to the remote daemon. Look at ⟨Phase1-ID⟩ below.
The Local IP address to use, if we are multi-homed, or have aliases.
The constant ‘1’, as ISAKMP-peers and IPsec-connections really are handled by the same code inside isakmpd(8).
For UDP, the UDP port number to send to. This is optional; the default value is 500 which is the IANA-registered number for ISAKMP.
If existent, the name of the section that describes the remote client ID we expect the remote daemon to send us. If not present, it defaults to the address of the remote daemon. Look at ⟨Phase1-ID⟩ below.
The name of the transport protocol; defaults to UDP.
Phase1-ID
Parameters for Phase 1 negotiation
If the ID-type is IPV4_ADDR or IPV6_ADDR, this tag should exist and be an IP address.
The ID type as given by the RFC specifications. For phase 1 this is currently IPV4_ADDR, IPV4_ADDR_SUBNET, IPV6_ADDR, IPV6_ADDR_SUBNET, FQDN, USER_FQDN, or KEY_ID.
If the ID-type is FQDN, USER_FQDN, or KEY_ID, this tag should exist and contain a domain name, user@domain, or other identifying string respectively.

In the case of KEY_ID, note that the IKE protocol allows any octet sequence to be sent or received under this payload, potentially including non-printable ones. isakmpd(8) can only transmit printable KEY_ID payloads, but can receive and process arbitrary KEY_ID payloads. This effectively means that non-printable KEY_ID remote identities cannot be verified through this means, although it is still possible to do so through isakmpd.policy(5).

If the ID-type is IPV4_ADDR_SUBNET or IPV6_ADDR_SUBNET, this tag should exist and be a network subnet mask.
If the ID-type is IPV4_ADDR_SUBNET or IPV6_ADDR_SUBNET, this tag should exist and be a network address.
ISAKMP-configuration
Parameters for ISAKMP configuration
The domain of interpretation as given by the RFCs. Normally IPSEC. If unspecified, defaults to IPSEC.
The exchange type as given by the RFCs. For main mode this is ID_PROT and for aggressive mode it is AGGRESSIVE.
A list of proposed transforms to use for protecting the ISAKMP traffic. These are actually names for sections further describing the transforms. Look at ⟨ISAKMP-transform⟩ below.
ISAKMP-transform
Parameters for ISAKMP authentication
The authentication method as the RFCs name it, or ANY.
The encryption algorithm as the RFCs name it, or ANY to denote that any encryption algorithm proposed will be accepted.
The group used for Diffie-Hellman exponentiations, or ANY. The names are symbolic, like MODP_768, MODP_1024, EC_155, and EC_185.
The hash algorithm as the RFCs name it, or ANY.
For encryption algorithms with variable key length, this is where the offered/accepted keylengths are described. The value is of the offer-accept kind described above.
A list of lifetime descriptions, or ANY. In the former case, each element is in itself a name of the section that defines the lifetime. Look at ⟨Lifetime⟩ below. If it is set to ANY, then any type of proposed lifetime type and value will be accepted.
The algorithm to use for the keyed pseudo-random function (used for key derivation and authentication in phase 1), or ANY.
Lifetime
Parameters for connection duration
An offer/accept kind of value; see above. Can also be set to ANY.
or KILOBYTES depending on the type of the duration. Notice that this field may NOT be set to ANY.
IPsec-connection
Parameters for IPsec connection configuration
The name of the IPsec-configuration section to use. Look at ⟨IPsec-configuration⟩ below.
A comma-separated list of flags controlling the further handling of the IPsec SA. Currently only one flag is defined:
If this flag is given and this ⟨IPsec-connection⟩ is part of the phase 2 connections we automatically keep up, it will not automatically be used for accepting connections from the peer.
The name of the ISAKMP-peer to talk to in order to set up this connection. The value is the name of an ⟨ISAKMP-peer⟩ section. See above.
If existent, the name of the section that describes the optional local client ID that we should present to our peer. It is also used when we act as responders to find out what ⟨IPsec-connection⟩ we are dealing with. Look at ⟨IPsec-ID⟩ below.
The constant ‘2’, as ISAKMP-peers and IPsec-connections really are handled by the same code inside isakmpd(8).
If existent, the name of the section that describes the optional remote client ID that we should present to our peer. It is also used when we act as responders to find out what ⟨IPsec-connection⟩ we are dealing with. Look at ⟨IPsec-ID⟩ below.
Add a pf(4) tag to all packets of phase 2 SAs created for this connection. This will allow matching packets for this connection by defining rules in pf.conf(5) using the keyword.

The following variables can be used in tags to include information from the remote peer on runtime:

$id
The remote phase 1 ID. It will be expanded to id-type/id-value, e.g. fqdn/foo.bar.org.
$domain
Extract the domain from IDs of type FQDN or UFQDN.

For example, if the ID is fqdn/foo.bar.org or ufqdn/user@bar.org, “PF-Tag=ipsec-$domain” expands to “ipsec-bar.org”. The variable expansion for the PF-Tag directive occurs only at runtime, not during configuration file parse time.

Specify a sec(4) interface minor number that the SAs will be used with. Configuring Interface also disables the insertion of flows, and instead relies on the routing of packets over the associated sec(4) interface.
IPsec-configuration
Parameters for IPsec configuration
The domain of interpretation as given by the RFCs. Normally IPSEC. If unspecified, defaults to IPSEC.
The exchange type as given by the RFCs. For quick mode this is QUICK_MODE.
A list of protection suites (bundles of protocols) usable for protecting the IP traffic. Each of the list elements is a name of an ⟨IPsec-suite⟩ section. See below.
IPsec-suite
Parameters for IPsec protection suite configuration
A list of the protocols included in this protection suite. Each of the list elements is a name of an ⟨IPsec-protocol⟩ section. See below.
IPsec-protocol
Parameters for IPsec protocol configuration
The protocol as given by the RFCs. Acceptable values are currently IPSEC_AH and IPSEC_ESP.
The size of the window used for replay protection. This is normally left alone. Look at the ESP and AH RFCs for a better description.
A list of transforms usable for implementing the protocol. Each of the list elements is a name of an ⟨IPsec-transform⟩ section. See below.
IPsec-transform
Parameters for IPsec transform configuration
The optional authentication algorithm, or ANY in the case of this being an ESP transform.
The encapsulation mode as given by the RFCs. This means TRANSPORT or TUNNEL.
An optional (provides PFS if present) Diffie-Hellman group description. The values are the same as those for GROUP_DESCRIPTION in ⟨ISAKMP-transform⟩ sections shown above.
For encryption algorithms with variable key length, this is where the offered keylength is described.
List of lifetimes, each element is a ⟨Lifetime⟩ section name.
The transform ID as given by the RFCs, or ANY to denote that any transform proposed will be accepted.
IPsec-ID
Parameters for IPsec ID configuration
If the ID-type is IPV4_ADDR or IPV6_ADDR, this tag should exist and be an IP address, an interface name, or the default keyword. If an interface is used, the first address of the appropriate family will be used. The default keyword uses the interface associated with the default route. In the case of IPv6, link-local addresses will be skipped if addresses which are not link-local exist. If the address on the interface changes, isakmpd(8) will not track the change. The configuration must be reloaded to learn the new address.
The ID type as given by the RFCs. For IPsec this is currently IPV4_ADDR, IPV6_ADDR, IPV4_ADDR_SUBNET, or IPV6_ADDR_SUBNET.
If the ID-type is IPV4_ADDR_SUBNET or IPV6_ADDR_SUBNET, this tag should exist and be a network subnet mask or an interface. When an interface is specified, the netmask is the mask associated with the Network. The default keyword uses the interface associated with the default route.
If the ID-type is IPV4_ADDR_SUBNET or IPV6_ADDR_SUBNET, this tag should exist and be a network address, an interface, or the default keyword. When an interface is specified, the network is selected as with the Address tag.
If the ID-type is IPV4_ADDR, IPV4_ADDR_SUBNET, IPV6_ADDR, or IPV6_ADDR_SUBNET, this tag indicates what source or destination port is allowed to be transported over the SA (depending on whether this is a local or remote ID). If left unspecified, all ports of the given transport protocol will be transmitted (or permitted) over the SA. The Protocol tag must be specified in conjunction with this tag.
If the ID-type is IPV4_ADDR, IPV4_ADDR_SUBNET, IPV6_ADDR, or IPV6_ADDR_SUBNET, this tag indicates what transport protocol should be transmitted over the SA. If left unspecified, all transport protocols between the two address (ranges) will be sent (or permitted) over that SA.

Parameters to use with IKE mode-config. One ID per peer.

An IKECFG-ID is written as [<ID-type>/<name>]. The following ID types are supported:

IPv4
[ipv4/A.B.C.D]
IPv6
[ipv6/abcd:abcd::ab:cd]
FQDN
[fqdn/foo.bar.org]
UFQDN
[ufqdn/user@foo.bar.org]
ASN1_DN
[asn1_dn//C=aa/O=cc/...] (Note the double slashes as the DN itself starts with a ‘/’.)

Each section specifies what configuration values to return to the peer requesting IKE mode-config. Currently supported values are:

The peer's network address.
The peer's netmask.
The IP address of a DNS nameserver.
The IP address of a WINS server.
Initiator-ID
Parameters for peer initiator configuration

During phase 1 negotiation isakmpd(8) looks for a pre-shared key in the ⟨ISAKMP-peer⟩ section. If no Authentication data is specified in that section, and isakmpd(8) is not the initiator, it looks for Authentication data in a section named after the initiator's phase 1 ID. This allows mobile users with dynamic IP addresses to have different shared secrets.

This only works for aggressive mode because in main mode the remote initiator ID would not yet be known. Note, however, that use of aggressive mode is discouraged. See CAVEATS, below.

The name of the ⟨Initiator-ID⟩ section depends on the ID type sent by the initiator. Currently this can be:

IPv4
[A.B.C.D]
IPv6
[abcd:abcd::ab:cd]
FQDN
[foo.bar.org]
UFQDN
[user@foo.bar.org]

/etc/isakmpd/isakmpd.conf
The default isakmpd(8) configuration file.

An example of a configuration file:

# A configuration sample for the isakmpd ISAKMP/Oakley (aka IKEv1) daemon.

[General]
Listen-on=		10.1.0.2

# Incoming phase 1 negotiations are multiplexed on the source IP address
[Phase 1]
10.1.0.1=		ISAKMP-peer-west

# These connections are walked over after config file parsing and told
# to the application layer so that it will inform us when traffic wants to
# pass over them.  This means we can do on-demand keying.
[Phase 2]
Connections=		IPsec-east-west

# Default values are commented out.
[ISAKMP-peer-west]
Phase=			1
#Transport=		udp
Local-address=		10.1.0.2
Address=		10.1.0.1
#Port=			isakmp
#Port=			500
#Configuration=		Default-phase-1-configuration
Authentication=		mekmitasdigoat
#Flags=

[IPsec-east-west]
Phase=			2
ISAKMP-peer=		ISAKMP-peer-west
Configuration=		Default-quick-mode
Local-ID=		Net-east
Remote-ID=		Net-west
#Flags=

[Net-west]
ID-type=		IPV4_ADDR_SUBNET
Network=		192.168.1.0
Netmask=		255.255.255.0

[Net-east]
ID-type=		IPV4_ADDR_SUBNET
Network=		192.168.2.0
Netmask=		255.255.255.0

# Quick mode descriptions

[Default-quick-mode]
EXCHANGE_TYPE=		QUICK_MODE
Suites=			QM-ESP-3DES-SHA-PFS-SUITE,QM-ESP-AES-SHA-PFS-SUITE

# Data for an IKE mode-config peer
[asn1_dn//C=SE/L=SomeCity/O=SomeCompany/CN=SomePeer.company.com]
Address=		192.168.1.123
Netmask=		255.255.255.0
Nameserver=		192.168.1.10
WINS-server=		192.168.1.11

# pre-shared key based on initiator's phase 1 ID
[foo.bar.org]
Authentication=		mekmitasdigoat

#
# #####################################################################
# All configuration data below this point is not required as the example
# uses the predefined Main Mode transform and Quick Mode suite names.
# It is included here for completeness.  Note the default values for the
# [General] and [X509-certificates] sections just below.
# #####################################################################
#

[General]
Policy-file=		/etc/isakmpd/isakmpd.policy
Retransmits=		3
Exchange-max-time=	120

# KeyNote credential storage
[KeyNote]
Credential-directory=	/etc/isakmpd/keynote/

# Certificates stored in PEM format
[X509-certificates]
CA-directory=           /etc/isakmpd/ca/
Cert-directory=         /etc/isakmpd/certs/
CRL-directory=		/etc/isakmpd/crls/
Private-key=		/etc/isakmpd/private/local.key

# Default phase 1 description (Main Mode)

[Default-phase-1-configuration]
EXCHANGE_TYPE=		ID_PROT
Transforms=		3DES-SHA

# Main mode transforms
######################

# 3DES

[3DES-SHA]
ENCRYPTION_ALGORITHM=	3DES_CBC
HASH_ALGORITHM=		SHA
AUTHENTICATION_METHOD=	PRE_SHARED
GROUP_DESCRIPTION=	MODP_1024
Life=			LIFE_MAIN_MODE

# AES

[AES-SHA]
ENCRYPTION_ALGORITHM=	AES_CBC
KEY_LENGTH=		128,128:256
HASH_ALGORITHM=		SHA
AUTHENTICATION_METHOD=	PRE_SHARED
GROUP_DESCRIPTION=	MODP_1024
Life=			LIFE_MAIN_MODE

# AES-128

[AES-128-SHA]
ENCRYPTION_ALGORITHM=   AES_CBC
KEY_LENGTH=             128,128:128
HASH_ALGORITHM=         SHA
AUTHENTICATION_METHOD=  PRE_SHARED
GROUP_DESCRIPTION=      MODP_1024
Life=                   LIFE_MAIN_MODE

# AES-192

[AES-192-SHA]
ENCRYPTION_ALGORITHM=   AES_CBC
KEY_LENGTH=             192,192:192
HASH_ALGORITHM=         SHA
AUTHENTICATION_METHOD=  PRE_SHARED
GROUP_DESCRIPTION=      MODP_1024
Life=                   LIFE_MAIN_MODE

# AES-256

[AES-256-SHA]
ENCRYPTION_ALGORITHM=   AES_CBC
KEY_LENGTH=             256,256:256
HASH_ALGORITHM=         SHA
AUTHENTICATION_METHOD=  PRE_SHARED
GROUP_DESCRIPTION=      MODP_1024
Life=                   LIFE_MAIN_MODE

# Blowfish

[BLF-SHA]
ENCRYPTION_ALGORITHM=	BLOWFISH_CBC
KEY_LENGTH=		128,96:192
HASH_ALGORITHM=		SHA
AUTHENTICATION_METHOD=	PRE_SHARED
GROUP_DESCRIPTION=	MODP_1024
Life=			LIFE_MAIN_MODE

# Blowfish, using DH group 4 (non-default)
[BLF-SHA-EC185]
ENCRYPTION_ALGORITHM=	BLOWFISH_CBC
KEY_LENGTH=		128,96:192
HASH_ALGORITHM=		SHA
AUTHENTICATION_METHOD=	PRE_SHARED
GROUP_DESCRIPTION=	EC2N_185
Life=			LIFE_MAIN_MODE

# Quick mode protection suites
##############################

# 3DES

[QM-ESP-3DES-SHA-SUITE]
Protocols=		QM-ESP-3DES-SHA

[QM-ESP-3DES-SHA-PFS-SUITE]
Protocols=		QM-ESP-3DES-SHA-PFS

# AES

[QM-ESP-AES-SHA-SUITE]
Protocols=              QM-ESP-AES-SHA

[QM-ESP-AES-SHA-PFS-SUITE]
Protocols=              QM-ESP-AES-SHA-PFS

# AES-128

[QM-ESP-AES-128-SHA-SUITE]
Protocols=              QM-ESP-AES-128-SHA

[QM-ESP-AES-128-SHA-PFS-SUITE]
Protocols=              QM-ESP-AES-128-SHA-PFS

# AES-192

[QM-ESP-AES-192-SHA-SUITE]
Protocols=              QM-ESP-AES-192-SHA

[QM-ESP-AES-192-SHA-PFS-SUITE]
Protocols=              QM-ESP-AES-192-SHA-PFS

# AES-256

[QM-ESP-AES-256-SHA-SUITE]
Protocols=              QM-ESP-AES-256-SHA

[QM-ESP-AES-256-SHA-PFS-SUITE]
Protocols=              QM-ESP-AES-256-SHA-PFS

# AH

[QM-AH-MD5-SUITE]
Protocols=		QM-AH-MD5

[QM-AH-MD5-PFS-SUITE]
Protocols=		QM-AH-MD5-PFS

# AH + ESP (non-default)

[QM-AH-MD5-ESP-3DES-SHA-SUITE]
Protocols=		QM-AH-MD5,QM-ESP-3DES-SHA

[QM-ESP-3DES-SHA-AH-MD5-SUITE]
Protocols=		QM-ESP-3DES-SHA,QM-AH-MD5

# Quick mode protocols

# 3DES

[QM-ESP-3DES-SHA]
PROTOCOL_ID=		IPSEC_ESP
Transforms=		QM-ESP-3DES-SHA-XF

[QM-ESP-3DES-SHA-PFS]
PROTOCOL_ID=		IPSEC_ESP
Transforms=		QM-ESP-3DES-SHA-PFS-XF

[QM-ESP-3DES-SHA-TRP]
PROTOCOL_ID=		IPSEC_ESP
Transforms=		QM-ESP-3DES-SHA-TRP-XF

# AES

[QM-ESP-AES-SHA]
PROTOCOL_ID=		IPSEC_ESP
Transforms=		QM-ESP-AES-SHA-XF

[QM-ESP-AES-SHA-PFS]
PROTOCOL_ID=		IPSEC_ESP
Transforms=		QM-ESP-AES-SHA-PFS-XF

[QM-ESP-AES-SHA-TRP]
PROTOCOL_ID=		IPSEC_ESP
Transforms=		QM-ESP-AES-SHA-TRP-XF

# AES-128

[QM-ESP-AES-128-SHA]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-128-SHA-XF

[QM-ESP-AES-128-SHA-PFS]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-128-SHA-PFS-XF

[QM-ESP-AES-128-SHA-TRP]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-128-SHA-TRP-XF

# AES-192

[QM-ESP-AES-192-SHA]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-192-SHA-XF

[QM-ESP-AES-192-SHA-PFS]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-192-SHA-PFS-XF

[QM-ESP-AES-192-SHA-TRP]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-192-SHA-TRP-XF

# AES-256

[QM-ESP-AES-256-SHA]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-256-SHA-XF

[QM-ESP-AES-256-SHA-PFS]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-256-SHA-PFS-XF

[QM-ESP-AES-256-SHA-TRP]
PROTOCOL_ID=            IPSEC_ESP
Transforms=             QM-ESP-AES-256-SHA-TRP-XF


# AH MD5

[QM-AH-MD5]
PROTOCOL_ID=		IPSEC_AH
Transforms=		QM-AH-MD5-XF

[QM-AH-MD5-PFS]
PROTOCOL_ID=		IPSEC_AH
Transforms=		QM-AH-MD5-PFS-XF

# Quick mode transforms

# 3DES

[QM-ESP-3DES-SHA-XF]
TRANSFORM_ID=		3DES
ENCAPSULATION_MODE=	TUNNEL
AUTHENTICATION_ALGORITHM=	HMAC_SHA
Life=			LIFE_QUICK_MODE

[QM-ESP-3DES-SHA-PFS-XF]
TRANSFORM_ID=		3DES
ENCAPSULATION_MODE=	TUNNEL
AUTHENTICATION_ALGORITHM=	HMAC_SHA
GROUP_DESCRIPTION=	MODP_1024
Life=			LIFE_QUICK_MODE

[QM-ESP-3DES-SHA-TRP-XF]
TRANSFORM_ID=		3DES
ENCAPSULATION_MODE=	TRANSPORT
AUTHENTICATION_ALGORITHM=	HMAC_SHA
Life=			LIFE_QUICK_MODE

# AES

[QM-ESP-AES-SHA-XF]
TRANSFORM_ID=		AES
ENCAPSULATION_MODE=	TUNNEL
AUTHENTICATION_ALGORITHM=	HMAC_SHA
KEY_LENGTH=		128
Life=			LIFE_QUICK_MODE

[QM-ESP-AES-SHA-PFS-XF]
TRANSFORM_ID=		AES
ENCAPSULATION_MODE=	TUNNEL
AUTHENTICATION_ALGORITHM=	HMAC_SHA
GROUP_DESCRIPTION=	MODP_1024
KEY_LENGTH=		128
Life=			LIFE_QUICK_MODE

[QM-ESP-AES-SHA-TRP-XF]
TRANSFORM_ID=		AES
ENCAPSULATION_MODE=	TRANSPORT
AUTHENTICATION_ALGORITHM=	HMAC_SHA
KEY_LENGTH=		128
Life=			LIFE_QUICK_MODE

# AES-128

[QM-ESP-AES-128-SHA-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TUNNEL
AUTHENTICATION_ALGORITHM=       HMAC_SHA
KEY_LENGTH=             128
Life=                   LIFE_QUICK_MODE

[QM-ESP-AES-128-SHA-PFS-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TUNNEL
AUTHENTICATION_ALGORITHM=       HMAC_SHA
GROUP_DESCRIPTION=      MODP_1024
KEY_LENGTH=             128
Life=                   LIFE_QUICK_MODE

[QM-ESP-AES-128-SHA-TRP-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TRANSPORT
AUTHENTICATION_ALGORITHM=       HMAC_SHA
KEY_LENGTH=             128
Life=                   LIFE_QUICK_MODE

# AES-192

[QM-ESP-AES-192-SHA-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TUNNEL
AUTHENTICATION_ALGORITHM=       HMAC_SHA
KEY_LENGTH=             192
Life=                   LIFE_QUICK_MODE

[QM-ESP-AES-192-SHA-PFS-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TUNNEL
AUTHENTICATION_ALGORITHM=       HMAC_SHA
GROUP_DESCRIPTION=      MODP_1024
KEY_LENGTH=             192
Life=                   LIFE_QUICK_MODE

[QM-ESP-AES-192-SHA-TRP-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TRANSPORT
AUTHENTICATION_ALGORITHM=       HMAC_SHA
KEY_LENGTH=             192
Life=                   LIFE_QUICK_MODE

# AES-256

[QM-ESP-AES-256-SHA-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TUNNEL
AUTHENTICATION_ALGORITHM=       HMAC_SHA
KEY_LENGTH=             256
Life=                   LIFE_QUICK_MODE

[QM-ESP-AES-256-SHA-PFS-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TUNNEL
AUTHENTICATION_ALGORITHM=       HMAC_SHA
GROUP_DESCRIPTION=      MODP_1024
KEY_LENGTH=             256
Life=                   LIFE_QUICK_MODE

[QM-ESP-AES-256-SHA-TRP-XF]
TRANSFORM_ID=           AES
ENCAPSULATION_MODE=     TRANSPORT
AUTHENTICATION_ALGORITHM=       HMAC_SHA
KEY_LENGTH=             256
Life=                   LIFE_QUICK_MODE


# AH

[QM-AH-MD5-XF]
TRANSFORM_ID=		MD5
ENCAPSULATION_MODE=	TUNNEL
AUTHENTICATION_ALGORITHM=	HMAC_MD5
Life=			LIFE_QUICK_MODE

[QM-AH-MD5-PFS-XF]
TRANSFORM_ID=		MD5
ENCAPSULATION_MODE=	TUNNEL
GROUP_DESCRIPTION=	MODP_1024
Life=			LIFE_QUICK_MODE

[Sample-Life-Time]
LIFE_TYPE=		SECONDS
LIFE_DURATION=		3600,1800:7200

[Sample-Life-Volume]
LIFE_TYPE=		KILOBYTES
LIFE_DURATION=		1000,768:1536

keynote(1), openssl(1), ipsec(4), keynote(4), isakmpd.policy(5), isakmpd(8)

Using aggressive mode is discouraged due to various design problems. If your peer only supports aggressive mode, consider replacing that peer with a sane ISAKMP/IKE implementation. For details see http://www.usenix.org/publications/login/1999-12/features/harmful.html.

The RFCs do not permit differing DH groups in the same proposal for aggressive and quick mode exchanges. Mixing both PFS and non-PFS suites in a quick mode proposal is not possible, as PFS implies using a DH group.

August 8, 2023 current